Cramer-Rao bound on the estimation accuracy of complex-valued homogeneous Gaussian random fields

نویسنده

  • Joseph M. Francos
چکیده

This paper considers the problem of the achievable accuracy in jointly estimating the parameters of a complex-valued two-dimensional (2-D) Gaussian and homogeneous random field from a single observed realization of it. Based on the 2-D Wold decomposition, the field is modeled as a sum of purely indeterministic, evanescent, and harmonic components. Using this parametric model, we first solve a key problem common to many open problems in parametric estimation of homogeneous random fields: that of expressing the field mean and covariance functions in terms of the model parameters. Employing the parametric representation of the observed field mean and covariance, we derive a closed-form expression for the Fisher information matrix (FIM) of complexvalued homogeneous Gaussian random fields with mixed spectral distribution. Consequently, the Cramér–Rao lower bound on the error variance in jointly estimating the model parameters is evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the accuracy of estimating the parameters of discrete homogeneous random fields with mixed spectral distributions

This paper considers the achievable accuracy in jointly estimating the parameters of a real-valued twodimensional (2-D) homogeneous random field with mixed spectral distribution, from a single observed realization of it. On the basis of a 2-D Wold-like decomposition, the field is represented as a sum of mutually orthogonal components of three types: purely indeterministic, harmonic, and evanesc...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

Doppler frequency estimation and the Cramer-Rao bound

This paper addresses the problem of Doppler frequency estimation in the presence of speckle and receiver noise. An ultimate accuracy bound for Doppler frequency estimation is derived from the Cramer-Rao inequality. It is shown that estimates based on the correlation of the signal power spectra with an arbitrary weighting function are approximately Gaussian distributed. Their variance is derived...

متن کامل

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

Cramer-Rao Bounds for Nonparametric Surface Reconstruction from Range Data

The Cramer-Rao error bound provides a fundamental limit on the expected performance of a statistical estimator. The error bound depends on the general properties of the system, but not on the specific properties of the estimator or the solution. The Cramer-Rao error bound has been applied to scalarand vector-valued estimators and recently to parametric shape estimators. However, nonparametric, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2002